Bilinear approach to N = 2 supersymmetric KdV equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S ep 2 00 8 Bilinear Approach to N = 2 Supersymmetric KdV equations

The N = 2 supersymmetric KdV equations are studied within the framework of Hirota’s bilinear method. For two such equations, namely N = 2, a = 4 and N = 2, a = 1 supersymmetric KdV equations, we obtain the corresponding bilinear formulations. Using them, we construct particular solutions for both cases. In particular, a bilinear Bäcklund transformation is given for the N = 2, a = 1 supersymmetr...

متن کامل

Bilinear Approach to Supersymmetric KdV Equation

Extending the gauge-invariance principle for τ functions of the standard bilinear formalism to the supersymmetric case, we define N = 1 supersymmetric Hirota operators. Using them, we bilinearize SUSY KdV equation. The solution for multiple collisions of super-solitons is given.

متن کامل

Extension of the bilinear formalism to supersymmetric KdV-type equations

Extending the gauge-invariance principle for τ functions of the standard bilinear formalism to the supersymmetric case, we define N=1 supersymmetric Hirota operators. Using them, we bilinearize SUSY KdV-type equations (KdV, Sawada-Kotera-Ramani, Hirota-Satsuma). The solutions for multiple collisions of super-solitons and extension to SUSY sine-Gordon are also discussed.

متن کامل

Hirota’s virtual multi-soliton solutions of N = 2 supersymmetric KdV equations

We prove that Mathieu’s N = 2 supersymmetric Korteweg–de Vries equations with a = 1 or 4 admit Hirota’s n-supersoliton solutions, whose nonlinear interaction does not produce any phase shifts. For initial profiles that can not be distinguished from a one-soliton solution at times t ≪ 0, we reveal the possibility of a spontaneous decay and, within a finite time, transformation into a solitonic s...

متن کامل

Nonlocal conservation laws for supersymmetric KdV equations

The nonlocal conservation laws for the N=1 supersymmetric KdV equation are shown to be related in a simple way to powers of the fourth root of its Lax operator. This provides a direct link between the supersymmetry invariance and the existence of nonlocal conservation laws. It is also shown that nonlocal conservation laws exist for the two integrable N=2 supersymmetric KdV equations whose recur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science in China Series A: Mathematics

سال: 2009

ISSN: 1006-9283,1862-2763

DOI: 10.1007/s11425-009-0014-x